Image-Text Dataset Generation for Image Annotation and Retrieval
نویسندگان
چکیده
This paper presents a new dataset of images gathered from the Web with corresponding text obtained from the webpages near where the images appeared. Already extracted features are provided to ease the dataset usage for other researchers. An initial release of 250,000 images is targeted at automatic image annotation with unsupervised data. This dataset is the one being used for the ImageCLEF 2012 Web image annotation benchmark.
منابع مشابه
Fuzzy Neighbor Voting for Automatic Image Annotation
With quick development of digital images and the availability of imaging tools, massive amounts of images are created. Therefore, efficient management and suitable retrieval, especially by computers, is one of themost challenging fields in image processing. Automatic image annotation (AIA) or refers to attaching words, keywords or comments to an image or to a selected part of it. In this paper,...
متن کاملImage retrieval using the combination of text-based and content-based algorithms
Image retrieval is an important research field which has received great attention in the last decades. In this paper, we present an approach for the image retrieval based on the combination of text-based and content-based features. For text-based features, keywords and for content-based features, color and texture features have been used. Query in this system contains some keywords and an input...
متن کاملTags Re-ranking Using Multi-level Features in Automatic Image Annotation
Automatic image annotation is a process in which computer systems automatically assign the textual tags related with visual content to a query image. In most cases, inappropriate tags generated by the users as well as the images without any tags among the challenges available in this field have a negative effect on the query's result. In this paper, a new method is presented for automatic image...
متن کاملUsing Text Surrounding Method to Enhance Retrieval of Online Images by Google Search Engine
Purpose: the current research aimed to compare the effectiveness of various tags and codes for retrieving images from the Google. Design/methodology: selected images with different characteristics in a registered domain were carefully studied. The exception was that special conceptual features have been apportioned for each group of images separately. In this regard, each group image surr...
متن کاملCross-Media Retrieval using Probabilistic Model of Automatic Image Annotation
In recent years, automatic image annotation (AIA) has been applied to cross-media retrieval usually due to its advantage of mining correlations of images and annotation texts efficiently. However, some AIA methods just annotate images as a unit and the accuracy of annotation may not be acceptable. In this paper, we propose a kind of probabilistic model which may assign keywords to an un-annotat...
متن کامل